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The lifetime effects of repetitive head impacts have captured considerable public and scientific interest over the past decade, yet a 
knowledge gap persists in our understanding of midlife neurological well-being, particularly in amateur level athletes. This study 
aimed to identify the effects of lifetime exposure to sports-related head impacts on brain morphology in retired, amateur athletes. 
This cross-sectional study comprised of 37 former amateur contact sports athletes and 21 age- and sex-matched noncontact athletes. 
High-resolution anatomical, T1 scans were analyzed for the cortical morphology, including cortical thickness, sulcal depth, and sulcal 
curvature, and cognitive function was assessed using the Dementia Rating Scale-2. Despite no group differences in cognitive functions, 
the contact group exhibited significant cortical thinning particularly in the bilateral frontotemporal regions and medial brain regions, 
such as the cingulate cortex and precuneus, compared to the noncontact group. Deepened sulcal depth and increased sulcal curvature 
across all four lobes of the brain were also notable in the contact group. These data suggest that brain morphology of middle-aged 
former amateur contact athletes differs from that of noncontact athletes and that lifetime exposure to repetitive head impacts may be 
associated with neuroanatomical changes. 
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Introduction 
The prevalence of neurodegenerative diseases, such as 
Alzheimer’s disease (AD) and AD-related dementia, is anticipated 
to triple over the next three decades (Collaborators 2022). While 
well-established risk factors like age, genetics, obesity, and 
cardiovascular diseases are associated with AD (Xu et al. 2015), 
emerging research highlights traumatic brain injury (TBI) as a 
modifiable risk factor, particularly through repetitive concussive 
and nonconcussive head impacts in sports (Baumgart et al. 
2015; Livingston et al. 2020; Echlin et al. 2021; Nowinski et al. 
2024). This includes cases of chronic traumatic encephalopathy 
(CTE), where repeated mechanical forces disrupt structural 
elements of the brain and accelerate the aging process (McKee 
et al. 2016). Over the past two decades, significant effort has 
been invested in understanding the etiology and treatment of 
concussions, establishing limits for tolerance to repetitive head 
impacts (RHIs), and identifying risk factors and diagnostic criteria 
for CTE. However, these endeavors have predominantly focused 
on either active athletic population (e.g. professional, collegiate, 
adolescent) or the deceased, revealing a critical knowledge gap 
regarding the association between RHI and brain health in middle 
aged adults. 

Owing to the structural vulnerability of axons to shear 
and strain forces, athletes experiencing RHI consistently show 

damage at the axonal microstructural level (Schneider et al. 2019). 
Conversely, alterations in brain structure at a macro-level have 
been thought to require prolonged exposure to RHI. For example, 
active soccer and rugby players in their 20s and 30s demonstrate 
no sign of cortical morphological changes (Wojtowicz et al. 
2018; Oliveira et al. 2020), yet reduced cortical thickness in 
frontotemporal regions and parietal lobes are notable years 
after retirement from professional American football and soccer 
(Goswami et al. 2016; Koerte et al. 2016). On the other hand, a more 
recent neuroimaging study by Zuidema et al. (2024), including 
205 adolescent football players and 70 age-sex-race-matched 
noncontact control athletes, revealed significant cortical thinning 
in the frontooccipital regions of football players’ brains. Similarly, 
active high school and college football players exhibited greater 
brain volume reduction and cortical thinning in frontotemporal 
regions after a single (Dudley et al. 2022) and multiple seasons 
(Mills et al. 2020), in comparison to control athletes such as 
volleyball. This observation supports the concept that alterations 
in brain morphology can occur without discernible clinical signs 
of neurodegenerative conditions (Meier et al. 2016; Zuidema et al. 
2024), which is further underscored by a recent report highlighting 
cases of CTE among young adults with a history of RHI exposure 
(McKee et al. 2023). Thus, a rigorous characterization technique in 
premortem brain integrity is of paramount importance to public 
health.
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Complementary to measuring cortical thickness, a geometric 
analysis provides insights into sulcal depth and sulcal curvature 
measures, offering indicators of the neurobiological aspects of 
brain aging (Zilles et al. 1988). Computational studies suggest 
that traumatic forces to the brain prompt the rapid clustering 
of cerebral spinal fluid in the base of sulci, causing shearing 
waves known as “water hammer” effects (Kochunov et al. 2005). 
Repetitive mechanical stress can accelerate tissue atrophy and 
deepen sulci (Zuidema et al. 2024). Gyrus formation occurs during 
prenatal and postnatal stages until age 2, but various stressors, 
including brain trauma, can alter gyrification and complexity of 
curvatures. For example, adults with recent concussions showed 
a significant increase in frontal lobe sulcal curvature compared 
to controls, coupled with reduced sulcal curvature in the tem-
poral lobe (Gharehgazlou et al. 2022). Moreover, individuals who 
experienced brain trauma at an early age (1 to 8 yr) demonstrated 
altered cortical organization, as illustrated by increased sulcal 
curvature in widespread frontoparietal and posterior temporal 
regions (Wilde et al. 2021). These findings provide insights into 
the dynamic cortical changes in individuals with a history of RHI. 

In this cohort study, we applied to these neuroimaging tech-
niques to examine cortical morphological differences between a 
broad range of middle-aged adults (30 to 60 yr) with an extensive 
history (10+ years) of contact sports and age-/sex-matched con-
trol adults with a history of noncontact sports. We hypothesized 
that the contact group would exhibit cortical thinning, greater 
sulcal depth, and altered sulcal curvature patterns compared to 
those of the control group. Our exploratory analysis included 
potential relationships between cognitive performance and brain 
morphology. 

Materials and methods 
Participants 
This cohort study included 60 participants, including 38 contact 
sport athletes (28 males, 10 females) and 22 age- and sex-matched 
noncontact athletes (14 males, 8 females). Potential participants 
were recruited by emails to community partners, social media 
posts, and Indiana CTSI’s iCONNECT. Data were collected from 
February to September 2023. Potential participants were screened 
as either a retired contact sport or retired noncontact sport ath-
lete. A contact sport was operationally defined as sports that 
have routine, body-to-body contact that is expected as part of the 
sport played. This includes, but is not limited to, sports such as 
football, rugby, soccer, wrestling, boxing, and ice hockey. Noncon-
tact sports were operationally defined as sports where body-to-
body contact is rare and unexpected. This includes, but is not 
limited to, baseball, cross-country/track, volleyball, and tennis 
(Katz et al. 2018). Inclusion criteria for the contact group included 
having at least 10 years of organized, amateur level contact 
sport participation experience and being between the ages of 30 
and 60. For the noncontact group, participants needed to have 
at least 10 years of participation in organized, amateur level 
noncontact sports, no history of participation in contact sports, 
and be between the ages of 30 and 60. Amateur-level athlete 
was operationally defined as athletes who had participated in 
childhood, high school, and/or collegiate level sports. Exclusion 
criteria for both groups were any history of head, neck, or facial 
injuries, including concussions, in the 6 months prior to study 
participation, pregnancy, a history of any neurological disorders, 
impaired decisional capacity, metal implants in the head, and any 
implanted electro/magnetic devices. Please see Fig. 1 for a flow 
chart of the study. All participants provided informed consent 

Fig. 1. Study flow chart. 

prior to participation in any study procedures. The study proto-
col was approved by the Indiana University Institutional Review 
Board (#17763). 

Cognitive assessment 
Prior to MRI scan, participants in both groups underwent cognitive 
assessment using the Dementia Rating Scale-2 (DRS-2), which 
is designed to assess cognitive impairment related to neurode-
generative disorders (Jurica et al. 2001). The DRS-2 is adminis-
tered by a trained mental health professional to the participant. 
The assessment consists of 36 tasks across 5 cognitive domains: 
attention, initiation/perseveration, construction, conceptualiza-
tion, and memory. Briefly, the attention subscale, which tests both 
auditory–visual and verbal–nonverbal memory, is composed of 8 
tasks with 37 possible points. The perseveration subscale, which 
measures the participants ability to switch, initiate, or terminate 
a specific activity, is comprised of 11 tasks with a maximum of 
37 points. The construction section requires the participant to 
recreate stimulus designs with varying degrees of difficulty and 
includes six tasks with a maximum of six points. The conceptual-
ization subscale, which measures the ability to induce and detect 
differences among verbal and visual stimuli, consists of six tasks 
with the potential of 39 points. The memory subscale includes 
verbal and nonverbal stimuli presented to examine immediate or 
delayed recall and consists of five tasks with a maximum of 25 
points. The highest score of the DRS-2 is 144, derived from the 
sum of each subsection. 

Mental health questionnaires 
Participants also completed mental health scales that assessed 
symptoms of depression [Patient Health Questionnaire– 
Depression (PHQ-9)], PTSD [PTSD Checklist–Civilian Version (PCL-
C)], and ADHD [DSM-5 Diagnostic Criteria for ADHD]. The PHQ-
9 assess depression-related symptoms: each of the nine items 
describes one symptom that corresponds to one of the diagnostic 
criteria for depression (Kroenke et al. 2001). The PCL-C assesses
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symptoms that are key for a diagnosis of PTSD (Conybeare et al. 
2012). The DSM-5 Diagnostic Criteria for ADHD is an 18-item 
screening tool developed to assess for key symptoms of an ADHD 
diagnosis in adults (Solanto et al. 2012). These three mental health 
questionnaires were selected for the following reasons. The PHQ-9 
is a validated questionnaire for depressive symptomology, which 
has been impacted by exposure to RHI (Buddenbaum et al. 2024; 
de Souza et al. 2024). Similarly, interactive effects of RHI and 
ADHD symptoms have been postulated, where ADHD symptoms 
may mimic persistent postconcussive symptoms (Cook et al. 
2020), as well as ADHD increasing vulnerability to RHI (Nowak 
et al. 2022). Lastly, a correlation between RHI and PTSD symptoms 
has been well-established, including our recent research in 
adults with RHI history exhibiting heightened PTSD symptoms 
(Buddenbaum et al. 2024). 

MRI data acquisition 
The MRI data were acquired on a 3 T Siemens Prisma scan-
ner (Siemens, Erlangen, Germany), equipped with a 64-channel 
head/neck coil. Cortical morphometry measurements were based 
on high-resolution T1-weighted, anatomical images, which were 
acquired using 3D MPRAGE pulse sequence with the following 
parameters: TR/TE = 2400/2.3 ms, TI = 1060 ms, flip angle = 8, 
matrix = 320 × 320, bandwidth = 210 Hz/pixel, and iPAT = 2, which 
resulted in 0.8 mm isotropic resolution. 

MRI quality control procedures 
The quality control (QC) step was performed through the DPABI 
QC module in DPABI toolbox. During the preprocessing, T1 images 
were re-oriented to enhance the accuracy of coregistration and 
segmentation, especially if the initial orientation was inconsistent 
with a standard template. The DPABI QC module rates the quality 
of structural images on a scale from 0 to 5 (with 5 being very 
good and 0 being very poor) by screening for distortions, head 
motion, ghosting, or structural abnormalities (Yan et al. 2016). The 
QC process rated “5” for all our participants’ images. Additionally, 
one team member performed a visual screening of the T1 images, 
which yielded no visible abnormalities. 

Cortical morphometry preprocessing and 
analyses 
The Computational Anatomy Toolbox (CAT12; https://neuro-jena. 
github.io/cat//), which is a plug-in software that is based on 
Statistical Parametric Mapping (SPM12; https://www.fil.ion.ucl. 
ac.uk/spm/software/spm12/) was used for preprocessing of the 
T1-weighted MRI data. The preprocessing consisted of bias-field 
correction, skull stripping, and alignment of the Montreal Neu-
rological Institute structural template to classify white matter 
(WM), gray matter (GM), and cerebrospinal fluid. Spatial nor-
malization was conducted with Diffeomorphic Anatomical Regis-
tration through Exponentiated Lie Algebra (DARTEL) registration 
(1.5 mm) (Li et al. 2021). 

Cortical thickness was analyzed based on the workflow that 
is specified in a previous study (Dahnke et al. 2013). To estimate 
the WM segment, a voxel-based distance method was used by 
calculating the distance from the inner GM boundary. The GM 
thickness was generated by using the values at the outer GM 
boundary in the WM distance map projected back to the inner 
GM boundary. A central surface was then created at the 50% 
level of the percentage position between the WM distance and 
the GM thickness. A topology correction based on spherical har-
monics was used to account for any topological deficits for the 
resultant central surface (Li et al. 2021). The central surface was 
then reparametrized into a common coordinate system through 

spherical mapping (Desikan et al. 2006). Cortical thickness data 
were then spherically smoothed with a Gaussian kernel with a 
15 mm full-width at half-maximum (FWHM). 

Sulcal curvature, as an indication for cortical folding, was 
calculated as absolute mean curvature based on spherical har-
monics (Luders et al. 2006). Mean curvature is an extrinsic sur-
face measure which provides information about the change from 
normal direction along the surface. Sulcal depth measures the 
depth of the sulci and is calculated as the Euclidean distance 
between the central surface and its convex hull based on spherical 
harmonics, then transformed with the sqrt function (Luders et al. 
2006). For these analyses, a 25 mm FWHM Gaussian kernel was 
used during the spatial smoothing step for sulcal curvature and 
sulcal depth analyses. 

Statistical analysis 
Demographic differences between the contact and noncontact 
groups were assessed with two-tailed independent samples t-tests 
for continuous variables and chi-square tests for categorical vari-
ables. Group differences in the sum and five individual domains 
of scores were assessed using multivariable linear regressions 
with the following covariates: age, sex, and depression score via 
PHQ-9. There is a multicollinearity issue among mental health 
scores that showed significant group differences (PHQ-9, PCL-C, 
and ADHD: all r < 0.65, P < 0.05); thus, we selected PHQ-9 to be 
included in the models as a representative covariate. A level of 
significance was set to P < 0.008 to reflect six outcomes. These 
analyses were conducted using R, version 4.3.2 (R Project for 
Statistical Computing) with the package nlme. The analysis was 
summarized by providing a contrast estimate with its 95% CI 
and P-value in the following format: [estimate (CI low, CI high); 
P-value]. 

Group comparisons of cortical thickness, sulcal depth, and 
sulcal curvature were performed using CAT12 and analyzed with a 
nonparametric permutation technique (5000 permutations). Age, 
sex, PHQ-9, and intracranial volume were included as covariates. 
The threshold-free cluster enhancement was used in the permu-
tation test, which gives a cluster-based threshold for familywise 
error correction, and the level of significance was set to P < 0.017 
to reflect 3 morphological outcomes. Brain regions with a cluster 
size of at least 30 vertices (cluster size × percentage covered in the 
specific region produced by CAT12) were reported. The Desikan– 
Killiany atlas (DK40) (Potvin et al. 2017) was used to identify the 
cortical regions, and results were visualized using CAT12. 

Lastly, a series of linear regression model was used to explore 
whether cognitive function was related to cortical structural mor-
phology. A total DRS-2 score was regressed against cortical regions 
that showed significant group differences. The level of signifi-
cance was set to P < 0.017 to reflect 3 morphological predictors. 
Regression analysis was conducted using CAT12. 

Results 
Demographics and mental health variables 
A total of 60 participants were included in this study (contact 
n = 38, noncontact = 22). Of the 38 contact athletes, 28 (73.7%) were 
male. Of the 22 noncontact athletes, 14 (63.6%) were male. The 
sample was predominately White (92.1%–95.5%) and were not 
Latino/Hispanic (90.9%–100%). Of the 60 participants, 2 (contact 
n = 1,  noncontact  n = 1) were not included in MRI analysis due 
to claustrophobia in scanner. As a result, a total of 58 partici-
pants (contact n = 37, noncontact n = 21) contributed to cortical 
morphometry analysis. There were no differences of demo-
graphics or mental health variables between the two groups. All
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Table 1. Group demographics. 

Group Contact sport Noncontact sport P-value 

n 37 21 – 
Sex (%) 28 M (75.6%) 13 M (61.9%) 0.42 
Age, years (SD) 41.6 (9.1) 45.0 (8.2) 0.15 
No. of previous concussion 0.06 

0, n (%) 24 (64.9) 18 (85.7) – 
1, n (%) 5 (13.5) 1 (4.8) – 
2, n (%) 2 (5.4) 1 (4.8) – 
3+, n (%) 6 (16.2) 1 (4.8) – 

Level of play up to, n (%)a 

High school 9 (24.3) 11 (52.4) 
College 28 (75.7) 10 (47.6) 
Postcollege 3 (8.1) 6 (28.6) 
Organized sport experience, n (%)b ,c 15.6 (6.0) 17.0 (6.1) 0.40 
Football 24 (63.2) 0 – 
Soccer 16 (42.1) 0 – 
Wrestling 9 (23.7) 0 – 
Hockey 7 (18.4) 0 – 
Baseball 0 15 (68.2) – 
Cross country/track 0 8 (36.4) – 
Volleyball 0 6(27.3) – 
Tennis 0 4 (18.2) – 

Race, n (%) 0.74 
White 34 (91.9) 20 (95.2) – 
Black/African American 0 (0) 0 (0) – 
Asian 2 (5.4) 1 (4.8) – 
Multiracial 1 (2.7) 0 (0) – 

Ethnicity, n (%) 0.24 
Not Latino/Hispanic 37 (100) 19 (90.5) – 
Latino/Hispanic 0 (0) 2 (9.5) – 

Mental Health Symptoms 
PHQ-9, mean (SD) 4.4 (5.2) 2 (3.4) 0.03 
PCL-C, mean (SD) 25.3 (10.4) 20.7 (4.6) 0.02 
ADHD, mean (SD) 9.8 (10.7) 5.3 (7.6) 0.05 

SD, standard deviation; PHQ-9, Patient Health Questionnaire – 9 assesses depressive symptoms; PCL-C, PTSD Checklist—Civilian Version assesses key 
symptoms of posttraumatic stress disorder; ADHD, DSM-5 diagnostic criteria for ADHD, measures key symptoms of attention deficit/hyperactivity disorder. 
aN and percentages are equal to more than 100% due to individuals participating in amateur level sports postcollege. bThe four most participated in sports. 
cN and percentages are equal to more than 100% due to individuals participating in multiple sports. 

demographics and mental health outcomes are summarized in 
Table 1. 

Cognition 
There was no difference in total DRS-2 scores, as well as all 5 
cognitive domains, between the contact and noncontact groups 
[total DRS-2 score: −0.07 (−2.70, 2.54), P = 0.9]. See Fig. 2 and 
Supplemental Table 2 for group differences in all comparisons and 
Supplemental Table 1 for all statistical output. 

Group differences in cortical structure 
Cortical thickness 
Compared to the noncontact group, the contact athletes showed 
significant cortical thinning in various brain regions of both hemi-
spheres. These areas include the rostral middle frontal gyrus, the 
precuneus, the posterior cingulate gyrus, and the isthmus cin-
gulate gyrus (Fig. 3A). Cortical thinning in the contact group was 
particularly pronounced in the occipitotemporal regions, such as 
superior/middle/inferior temporal gyri, lingual gyrus, and lateral 
occipital gyrus, as well as medial cortical regions, including cingu-
lum, precuneus, and insula. Detailed information for each brain 
region is listed in Table 2. 

Sulcal depth 
Significantly greater (deeper) sulcal depth was observed in the 
contact group as compared to the noncontact group in both 

hemispheres. Greater sulcal depth was pronounced in the lat-
eral side of the cortex, where the frontal, temporal, and parietal 
lobes merge, such as the postcentral, superior temporal, pars 
opercularis, lateral orbitofrontal, and pars triangularis. In addi-
tion, identical to cortical thickness, a significant group difference 
was observed in the left precuneus, whereby the contact group 
showing greater depth of sulci (Fig. 3B). Detailed information for 
each brain region is listed in Table 2. 

Sulcal curvature 
Relative to noncontact athletes, contact athletes showed greater 
sulcal curvature across four lobes, with the precuneus and 
precentral gyrus being impacted bilaterally. Additionally, large 
clusters of group differences were observed in the right lateral 
orbitofrontal gyrus, lateral occipital gyrus, and middle temporal 
gyrus. The contact group had three regions that showed lesser 
sulcal curvature than those of the noncontact group, including 
the left postcentral and superior parietal gyri and right superior 
frontal gyrus. (Fig. 3C). Detailed information for each brain region 
is listed in Table 2. 

Associations between cognition and cortical 
morphology 
An exploratory analysis was conducted to evaluate whether 
cognitive function was related to cortical structural morphology. 
A series of regression analyses yielded no cortical region achieving

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae301#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae301#supplementary-data
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Fig. 2. Group differences in cognitive function as assessed by the DRS-2. There were no significant differences in total DRS-2 scores between groups 
(A) as well as no observed significant group differences in any of the five subscales [attention (B), initiation/perseveration (C), construction (D), 
conceptualization (E), and memory (F)]. 

Fig. 3. Cortical morphometric panel. Significant group differences were observed in (A) cortical thickness, (B) sulcal depth, and (C) sulcal curvature 
in various parts of the brain. The multiple comparison was accounted for by nonparametric permutations (n = 5000) and the threshold-free cluster 
enhancement (TFCE) correction after 5000 permutations. Red: the contact group is higher compared to the noncontact group. Blue: the contact group 
is lower compared to the noncontact group. 

the adjusted statistical significance. Of note, there were a 
few marginal associations, including overall DRS-2 score and 
lower sulcal curvature in the left superior parietal lobule in 
the contact group (F = 4.437, y = 34.700–0.071x, P = 0.042). Also 
in the noncontact group, overall DRS-2 score was marginally 
associated with lower cortical thickness in the right precentral 
gyrus (F = 4.771, y = 5.193–0.019x, P = 0.043) and left superior 
temporal gyrus (F = 4.488, y = 4.716–0.012x, P = 0.049), as well 
as increased sulcal depth in the right inferior parietal lobule 
(F = 4.786, y = 0.936 + 0.011x, P = 0.043). 

Discussion 
Our study revealed distinct neuroanatomical differences between 
former amateur athletes with at least 10 years of contact sport 

experience as compared to age- and sex-matched noncontact 
control athletes. The data confirmed some previous findings and 
also generated critical knowledge about effects of decades of con-
tact sport participation on brain morphology. The study yielded 
four notable findings. Relative to the noncontact group, (i) the con-
tact group showed greater cortical thinning in widespread regions 
of the cortex, particularly in the right frontotemporal regions; 
(ii) deepening of sulcal depth was pronounced in the contact 
group, especially in the left hemisphere; (iii) group differences in 
the sulcal curvature were region-dependent. Increased sulcal cur-
vature was notable in the right hemisphere, such as the precuneus 
and precentral gyrus, whereas localized decrease in sulcal curva-
ture was observed in both hemispheres, including the left post-
central and superior parietal gyri and right superior frontal gyrus; 
and lastly, (iv) despite profound differences in cortical morphology
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Table 2. Differences in cortical morphology between the contact and noncontact groups. 

Measures Brain regions BA Coordinates Cluster size Peak t value P value 

x y z 

Cortical thickness 
Contact > noncontact Left isthmus cingulate cortex 23 −2 −10 25 50 −2.43 0.036 

Left posterior cingulate cortex 23 −20 −32 62 50 −2.60 0.016 
Right precuneus 7 12 −73 48 624 −2.49 0.012 
Right lateral occipital gyrus 17 33 −85 12 104 −2.61 0.012 
Right cuneus 17 14 −73 29 203 −2.46 0.012 
Right isthmus cingulate cortex 23 12 17 40 95 −2.62 0.012 
Right posterior cingulate cortex 23 10 20 −40 149 −2.95 0.012 
Right rostral middle frontal gyrus 45 6 56 29 224 −2.57 0.012 
Right lateral orbitofrontal gyrus 47 2 66 17 149 −2.69 0.015 
Right parsopercularis gyrus 44 57 36 6 184 −2.40 0.015 
Right postcentral gyrus 1 28 −26 58 150 −2.48 0.015 
Right supramarginal gyrus 40 50 −23 3 124 −2.58 0.027 
Right insula 47 36 19 5 104 −2.60 0.015 

Sulcal depth 
Contact > noncontact Left insula 13 −45 10 3 993 2.80 0.014 

Left parsopercularis gyrus 44 −10 29 59 397 2.72 0.014 
Left lateral orbitofrontal gyrus 11 −22 72 40 57 2.51 0.014 
Left supramarginal gyrus 40 −50 −33 2 318 2.86 0.014 
Left parstriangularis gyrus 44 −32 74 15 124 2.46 0.014 
Left rostral middle frontal gyrus 11 −48 45 7 33 3.03 0.014 
Left caudal middle-frontal gyrus 45 −51 −2 13 119 2.91 0.014 
Left transverse temporal gyrus 41 −59 −1 −12 119 3.90 0.014 

Sulcal curvature 
Contact > noncontact Left precuneus 7 −6 −58 27 228 3.27 0.015 

Left lateral orbitofrontal gyrus 11 −43 52 −1 186 2.73 0.023 
Left insula 13 −36 13 9 105 2.72 0.023 
Left posterior cingulate cortex 23 −8 −43 23 68 3.16 0.015 
Right superior temporal gyrus 6 48 4 −12 81 2.70 0.000 
Right insula 47 36 13 12 641 3.77 0.000 
Right lateral orbitofrontal gyrus 47 32 47 −23 595 2.99 0.000 
Right middle temporal gyrus 21 47 −34 21 458 2.36 0.000 
Right partriangularis gyrus 44 47 56 21 320 2.24 0.000 
Right parsopercularis gyrus 44 30 54 −1 275 3.26 0.000 
Right precuneus 7 10 −46 8 256 2.70 0.023 
Right precentral gyrus 1 8 233 69 229 2.49 0.000 
Right postcentral gyrus 1 26 −46 43 183 2.97 0.000 

Contact < noncontact Left postcentral gyrus 1 −29 −12 45 164 −2.80 0.029 

The statistical analysis to cortical thickness, sulcal depth, and sulcal curvature was used through the nonparametric permutations (n = 5000) and 
threshold-free cluster enhancement (TFCE) P < 0.017 after 5000 permutations. 

between groups, there was no discernable group difference in all 
domains of cognitive function. These data suggest that there are 
structural differences in the brains of retired contact athletes as 
compared to noncontact control athletes. 

Evidence of macrolevel, morphological changes in the brain 
during typical aging in healthy individuals have been well 
documented such that when a person ages there is significant 
cortical thinning particularly in the central sulcal region of the 
left and right hemispheres (Rettmann et al. 2006), and these 
brain structural alterations may accelerate in neurodegenerative 
diseases, including mild cognitive impairment (MCI) (Singh 
et al. 2006), AD (Wee et al. 2013), and CTE (Mackay et al. 
2019). Our data revealed that even in the absence of apparent 
cognitive impairments, former amateur contact athletes exhibit 
significant cortical thinning across broader cortical areas. For 
example, notable clusters of reduced cortical thickness manifest 
in the bilateral temporal regions (e.g. middle/superior/inferior 
temporal gyri) and regions associated with default mode 
network (DMN) (e.g. precuneus, posterior cingulate cortex, middle 
frontal cortex). These regions play a crucial role in maintaining 

mental stability and supporting higher cognitive functions. While 
brain structural integrity and neural function generally correlate 
(Segall et al. 2012), functional MRI is an ideal tool for detecting 
the functional integrity of neural networks. However, existing 
literature strongly aligns with our findings, demonstrating that 
even a single TBI or RHI can induce cortical thinning of the 
frontal, parietal, and temporal lobes (Wilde et al. 2012; Goswami 
et al. 2016; Govindarajan et al. 2016; Koerte et al. 2016). Moreover, 
these brain injuries are associated with declines in mental health 
wellbeing and impaired functional connectivity related to the 
DMN across a diverse spectrum of patients, spanning from 
pediatric to adult populations, including retired professional 
athletes. 

The potential mechanisms underlying the observed cortical 
thinning may be relevant to the neurobiological correlates of 
RHI. The cortical thinning process is often linked with the loss 
of neurons, dendrite, and synaptic density (Morrison and Hof 
1997). In 2010, Fleischman et al. conducted a study including 
older individuals (average 81.2 years old) without dementia and 
revealed that cortical thinning in 13 brain regions exhibited robust
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correlations (P < 0.00007) with circulating inflammatory mark-
ers (e.g. IL-6, TNF-a, C-reactive protein) (Fleischman et al. 2010). 
Remarkably, our data align with these findings, indicating corti-
cal thinning in 10 out of those 13 regions, including the lateral 
orbitofrontal, inferior temporal, and lingual gyri (Fleischman et al. 
2010). Neuroinflammation, especially associated with astroglio-
sis, stands out as a hallmark response to RHI. Biomarkers linked 
to astrogliosis, such as S100B and glial fibrillary acidic protein 
(GFAP), not only acutely elevate after a single concussion (Schulte 
et al. 2014; Jones et al. 2020) but also respond to nonconcussive 
RHI (Kawata et al. 2017; Kawata et al. 2018; Zonner et al. 2019; 
Zuidema et al. 2023). These data suggest that athletes engaged 
in contact sports with frequent RHI exposure are predisposed 
to chronic astrogliosis. Furthermore, as individuals age, the pro-
gression of cortical thinning has been associated with the extent 
of astrocyte and microglial activations (Vidal-Pineiro et al. 2020). 
Studies have begun establishing the link between astrogliosis and 
cortical thinning in former athletes, whereby both astrogliosis and 
astrocytic degeneration, characterized by beaded, broken astro-
cytic processes, emerge as common phenotypes in deceased indi-
viduals with extensive contact sport experience (Hsu et al. 2018; 
Arena et al. 2020). In addition to astrogliosis, cortical thinning has 
also been linked to decreased neurogenesis (Sowell et al. 2003). 
Studies have demonstrated that a reduction of neurogenesis, 
particularly in the hippocampus, have been correlated with mood 
disorders and cognitive decline (Lucassen et al. 2010). This is of 
importance as both CTE (McKee et al. 2023) and Alzheimer’s Dis-
ease (Ihara et al. 2018) are associated with hippocampal sclerosis. 
A future longitudinal study incorporating astrocyte-related blood 
biomarkers and cortical morphometry is imperative to elucidate 
biological mechanisms behind the cortical thinning in former 
contact sports athletes. 

This study introduces an innovative approach by integrating 
geometric features, specifically sulcal depth and sulcal curvature, 
to gain a comprehensive understanding of cortical morphology 
among former amateur athletes. While cortical folding primarily 
occurs during the prenatal period, the ongoing evolution of gyri 
and sulci responds to various stressors, including mechanical 
impact (e.g. TBI) (Wilde et al. 2021), internal factors like depression 
and anxiety (Schmaal et al. 2017), and environmental influences 
such as nutrition and socioeconomic status (Brito and Noble 
2014; Bernardoni et al. 2018), and the natural aging process (de 
Moraes et al. 2024). Our findings indicate that individuals with a 
history of contact sports exhibit greater sulcal depth in the frontal, 
temporal, and parietal lobes, with notable clusters observed in 
the postcentral gyrus, precuneus, and middle/superior temporal 
gyri. These results challenge the prevailing consensus regarding 
neurodegenerative disorders, where individuals with MCI and AD 
often present shallower sulcal depths compared to their healthy 
counterparts (Im et al. 2008) due to gray matter atrophy on the 
cortical surface (Thompson et al. 2003). However, trauma-induced 
neurodegenerative conditions, such as CTE, display a distinct 
biological signature, including aggregations of phosphorylated 
tau (p-tau) around small vessels at the depths of cortical sulci 
(Bieniek et al. 2021; Katz et al. 2021). Specifically, individuals with 
a history of repeated mild TBI had a preferential concentration 
of thorn-shaped astrocytes, a unique phenotype resulting from 
p-tau tangling within astrocytes, in the depths of sulci. This 
pattern is not observed in the brains of AD patients (Arena et al. 
2020). Furthermore, our recent data in high school football players 
align with this current study’s finding, such that greater sulcal 
depths were observed throughout the cortex in areas such as 
the superior/middle temporal gyri, the postcentral gyrus, and 
the pars opercularis, compared to noncontact control athletes 

(Zuidema et al. 2024). These data may offer insights into the 
increased sulcal depth observed in our sample and shed light on 
the cortical alterations that can occur after decades of contact 
sports participations. 

The alteration of sulcal curvature, specifically after trauma to 
the brain, can lead to significant functional consequences. Studies 
have demonstrated that divergence from typical cortical folding 
patterns can be linked to cognitive deficits, such as impaired 
executive dysfunction, memory, and attention (Im et al. 2006; 
Lamballais et al. 2020). Moreover, alterations in sulcal curvature 
have been shown to associate with disorders in sensory pro-
cessing, including impairments in visual and auditory perception 
(Cachia et al. 2008; Schultz et al. 2013). Additional studies have 
shown that psychiatric conditions such as generalized anxiety 
disorder (Molent et al. 2018), depression (Depping et al. 2018), 
and schizophrenia (Palaniyappan et al. 2011) have been associated 
with abnormal cortical folding patterns, which highlights the role 
that sulcal curvature plays in emotional regulation. 

As for the impact of trauma in cortical folding, Gharehgazlou 
et al. conducted a study involving adults in the subacute phase 
of concussion (2 wk to 3 mo postconcussion) and discovered 
significant increase in sulcal curvature in the frontal and medial 
regions of the brain compared to healthy controls (Gharehgazlou 
et al. 2022). Similarly, Wilde et al. (2021) reported increased sulcal 
curvature in the frontal and temporal regions among adoles-
cents with a history of TBI, suggesting a compensatory mech-
anism to reinforce impaired brain regions. These findings may 
help elucidate why the contact group from this study exhib-
ited greater sulcal curvature in frontotemporal and medial brain 
regions. 

Normal, healthy cognitive changes is expected and well doc-
umented as a person advances in their years. As someone ages, 
there are some cognitive domains, such as vocabulary, that are 
resilient to aging or even gradually improve. While other domains, 
such as memory, processing speed, and conceptualization, grad-
ually decline over time starting around the age of 30 (Harada 
et al. 2013). However, there is growing evidence that exposure 
to RHI is associated with impaired cognition in athletes at all 
levels (Koerte et al. 2017; Alosco et al. 2020). Specifically in areas 
such as working memory (Alosco et al. 2020) and response time 
(Koerte et al. 2017). However, in this study, we found no significant 
differences in cognition between the contact and noncontact 
sport athletes. Regrettably, this nonsignificance may be due to 
the selection of the DRS-2 as a cognitive measure. The DRS-2 was 
created to assess cognition in those aged 56 and older who were 
already experiencing some sort of cognitive impairment (Jurica 
et al. 2001) and therefore may not have been the most appropri-
ate assessment for the present sample. There are various other 
cognitive scales that would have been more appropriate for this 
sample. For example, the Behavior Rating Inventory of Executive 
Function—Adult Version (BRIEF-A) Metacognition Index may be 
more suitable. The BRIEF-A is a standardized assessment tool that 
was designed to evaluate everyday behaviors related to various 
executive function domains in adults aged 18 to 90 years old (Gioia 
et al. 2002). This broader age range would better encapsulate the 
sample in this study. Another cognition scale could be the Mon-
treal Cognitive Assessment (MoCA). The MoCA is an assessment 
that is widely used to it sensitivity in detecting early cognitive 
changes in neurodegenerative dementias (Nasreddine et al. 2005). 
While the typical age of the MoCA is 55 to 85 years old, it has 
been shown to be a useful screening device in samples similar 
to the one in this study (Alosco et al. 2021). Future iterations of 
this study would benefit from a more sensitive and well-suited 
cognitive screening tool.
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Limitations 
The results of this study should be interpreted within the context 
of several limitations. The sample size was limited with 37 contact 
and 21 noncontact retired amateur athletes. A longitudinal study 
with a larger sample size is needed to decipher the clinical sig-
nificance of the observed changes in cortical morphology. While a 
novel study sample of male and female retired amateur athletes, 
more racial and ethnic diversity would increase the general-
izability of this sample. It would be beneficial to broaden the 
recruitment area, potentially to multiple sites. It is also recognized 
that this study has a large age range of 30 to 60 years old. A more 
limited age range would encapsulate the “middle-aged” popula-
tion. It should be noted that concussion history was self-reported 
by participants. With the rapidly changing guidelines for concus-
sions diagnosis, it is likely that there were many undiagnosed 
concussions in this sample. Therefore, the secondary analysis on 
the role of concussion history on brain morphology was invalid. 
Further, the use of the DRS-2 was designed to screen individuals 
who are already exhibiting signs of cognitive decline. It may be less 
sensitive to subtle changes in middle-aged adults. More sensitive 
cognitive assessments may detect subtle changes that are not 
seen the present study, such as the BRIEF-A Metacognition Index 
and the MoCA. Additionally, an exploration of sex effects would 
be an interest to the research community; however, our skewed 
sample sizes between males and females in each group hindered 
our ability to conduct factorial ANOVA to examine the potential 
interaction effects between sex and RHI-induced morphological 
changes. 

Conclusion 
In summary, our data resulting from advanced neuroimaging 
techniques suggest that mid-life, retired amateur contact sport 
athletes have reduced cortical thickness, increased sulcal depth, 
and both increased and decreased sulcal curvature in widespread 
regions of the brain as compared to noncontact control athletes. 
Many of the affected brain regions were observed in areas that 
are important for executive function, emotional regulation, and 
memory processing and retrieval. No group differences in cogni-
tion were found between contact and noncontact athletes. These 
data illustrate the importance of continued research into cortical 
morphology in retired, amateur athletes. 
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